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Abstract
In the study of financial time series, covariance/correlation matrices play a central role in risk-related applications,

including financial contagion and portfolio selection. Different methodologies have been used in their prediction, from

methods based on Financial Econometrics DCC-GARCH (Engle in J Bus Econ Stat 20(3):339–350, 2002), to others linked

to Ecophysics like Random Matrix Theory (Wang et al. in Comput Econ 51:607–635, 2018), and more recently to Machine

Learning (Fiszeder and Orzeszko in Appl Intell 51(10):7029–7042, 2021). Despite these developments, there is no state-of-

the-art study that compares all these methods and assesses their predictive power in an out-of-sample setting. Indeed, in this

work, we focus on measuring the out-of-sample predictive power of correlation matrices of these different statistical

methods, in particular from three different fields that have converged in recent years in the analysis of financial data:

Econometrics, Econophysics, and Machine Learning. Thus, using a moving window scheme, we studied the correlation

matrices of 29 stock market indexes from different latitudes of the world. Among our findings, we see the relationship

between the measures of Eigen Entropy found in the market, with the error found in the forecast of each method in the form

of Square Forecast Error. We find that in the period from 2008 to 2022, considering 2608 moving windows, the out-of-

sample error tends to converge between the different methods, highlighting the performance of DCC-GARCH.

Keywords Covariance-matrix forecasting � Random matrix theory � DCC-GARCH � Support vector regression �
Random forest

1 Introduction

In the economic system, one of the most relevant issues is

the allocation of resources and how economic agents make

decisions in this respect, with the quantification of the risk

associated with these decisions being a central issue.

In particular, it is in the financial system that transac-

tions are undertaken that make it possible to mobilize

resources from one place to another, from areas with sur-

pluses to areas with deficits. Thus, the assessment of

covariance/correlation matrices has become an area of

increasing interest in the context of measuring systemic

risk, financial contagion, and portfolio selection, among

others [56].

Over time, various approaches have emerged from fields

such as econometrics, econophysics, stochastic modeling,

and more recently, Machine Learning.

Time series econometrics has explored phenomena in

the behavior of financial return series, such as the presence

of heavy tails associated with abnormal events, leptokur-

tosis (volatility clustering), asymmetries in positive versus

negative returns, and asset dependencies. As a result,

models have been proposed to study both returns and

volatility. In particular, the DCC-GARCH model has

studied the dynamics of correlations between assets over

time and has taken into consideration the behavior of

returns and their volatility [19].

On the other hand, econophysics has proposed to use

statistical mechanics techniques to study correlation

matrices. We can see applications of random matrix theory

and information theory that account for noise in empirical
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estimations, as well as market phenomena related to the

behavior of eigenvalues and eigenvectors present in these

estimations [15, 16].

Finally, with the arrival of large amounts of data and

high computational capacity, the option of using algorithms

from the field of artificial intelligence, in particular

Machine Learning, has emerged, adding the ability to

detect patterns associated with the nonlinearity and chaotic

behavior of data that live and interact within a complex

system such as the financial system [31]. Thus, in the

context of financial data, we can see applications related to

the prediction of financial asset prices [48], and the

selection of trading strategies [53]. Proposals have been

made in the field of obtaining correlation matrices and their

forecasting. The use of applications based on support

vector regression has made it possible to model the ele-

ments of correlation matrices dynamically, allowing their

forecast [22].

Despite these developments, there is no state-of-the-art

study that compares all these methods and assesses their

predictive power in an out-of-sample setting. Indeed, in

this work, we focus on measuring the out-of-sample pre-

dictive power of correlation matrices of these different

statistical methods, in particular from three different fields

that have converged in recent years in the analysis of

financial data: Econometrics, Econophysics, and Machine

Learning.

It is important to notice that despite the availability of

different ways of obtaining correlation matrices, several

factors affect their performance and the accuracy of the

estimates. For example, in the field of univariate time series

estimation, the modeling of economic growth has proven

that this task is dependent on variables such as the lag and

the length of the time windows considered when training

the models, as well as on the explanatory variables selected

[54]. In this context, our approach to evaluating the per-

formance of models from different fields is based on a fair

comparison of each method in terms of out-of-sample

prediction, considering 2608 moving windows of 120 days

over 14 years (2008–2022).

Furthermore, given that the main focus of the study is

the comparison, it is worth noting that some of the

methodologies have common roots in the hypothesis

behind them. For example, econometric, Random Matrix,

and stochastic models share some statistical assumptions,

such as the normal nature of returns. Machine Learning-

based approaches, on the other hand, are defined as data-

driven, which allows them to avoid the use of distributional

assumptions and to be generalizable.

In relation to economic assumptions these methods

follow the Efficient Market Hypothesis (EMH), which

indicates in its strong form that all the information is

already contained in the prices of assets; however, this

pattern could be broken in periods of crises [13]. In this

line, one of our findings is related to how market risk

affects the out-of-sample forecast error. We see that the

main errors occurred in the year 2008 period related to the

post-subprime crisis, and then in 2020, related to the crisis

generated by the pandemic.

In this context, some of the points made by this research

are:

i. We introduced a method that allows us to choose the

size of the window in which the out-of-sample error

is stabilized.

ii. In order to have a fair assessment of the predictive

power of the methods under analysis in predicting

correlation matrices, we introduced a scheme analo-

gous to Train/Test/Validate, where the model is

trained and predicted within the window, and the

matrices are evaluated against the realized matrix

immediately adjacent to the moving window.

iii. Within this methodological framework, we studied

methods for estimating correlation matrices from

three different fields: Econometrics, Econophysics,

and Machine Learning.

iv. We evaluated the relationship between market

uncertainty, using the Eigen Entropy indicator as a

proxy, and the out-of-sample error of correlation

matrix estimation, measured as the square of the

forecast error.

This article is structured following this schema. Firstly, a

literature review of the different fields that have proposed

methods to obtain correlation matrices is developed. Sec-

ondly, the data and the explored methods are presented,

Finally, the main results and discussion are shown.

2 Literature review

The measurement of risk has a long history in humanity,

with its first evidence in ancient civilizations such as the

Egyptians, who measured the level of the Nile in agree-

ment with the corresponding taxes that the farmers had to

pay to the state. Implicit in this was the idea of having a

way of predicting the future and, based on this, planning

the amount of taxes to be levied. However, it was not until

the application of mathematics to the study of probabilities

that the formal study of modern risk began [3].

In this section, we will cover some of the methods

associated with the estimation of an object that has been

used as a measure of systemic risk [11, 45, 56], the cor-

relation matrix.
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2.1 Econometric methods

During the last decades, the volatility associated with the

price fluctuation of assets has been studied by the econo-

metric field generating a series of applications in fields like

Derivatives, Trading, and Risk modeling. Thus some of the

main stylized facts found in the empirical literature, such as

Leptokurtosis and volatility clustering, have been explored

from the perspective of time series econometrics beginning

with the autoregressive conditional heteroskedasticity

(ARCH) model [17] and then with the Generalized ARCH

model, GARCH [5], models based on a generative process

that permits to model a changing variance in a univariate

time series of a financial asset.

Since then, the Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) models have been used for

the modeling of volatility in financial returns, showing

good performance in the capture of the properties of

financial time series as volatility clustering, asymmetry,

and fat tails. An important characteristic of the GARCH

model is the way that manages both, the unconditional and

the conditional volatility, determined by the entire sample

and for the most recent observation correspondingly [14].

However, the different assets in a market are not alone

and have relationships that need to be properly captured. In

the case of multivariate time series, the Multivariate

GARCH (MGARCH) models are of great importance, but

their solutions require the calculation of some parameters

that grow with the number of assets, and for this reason,

their specifications are considered as a series of constraints.

One of the most important MGARCH models is the

Dynamic Conditional Correlation GARCH (DCC-

GARCH), which allows the estimation of correlation

matrices that vary over time. This model is estimated using

maximum log-likelihood estimation. As mentioned above,

time-varying correlation matrices are a key component of

portfolio management and portfolio optimization [19],

which has fostered the empirical investigation of these

types of econometric techniques.

2.2 Econophysics methods

In the study of large particle systems, Random Matrix

Theory (RMT) arises, based on the statistical properties of

matrices whose elements are random variables, describing

the possible microscopic states of a system [35]. This tool

has different applications and has been adopted by

Econophysics, an interdisciplinary field that mixes ele-

ments of Physics and Economics, for the study of economic

systems.

In the field of finances, the RMT has been used to

understand the interactions between stock indexes at the

system level by the study of the statistical behavior of the

eigenvalues from empirical correlation matrices and the

main factors that influence it. The RMT has shown that a

big percentage of eigenvalues are below the limits pre-

dicted by it and has shown many of them are dominated by

the noise, and only a few of them are statistically signifi-

cant and would really contain information [32].

Besides this object, the correlation matrix has been used

in financial models like Portfolio optimization [37] and has

been studied because of its changing nature in time [21]

implying that models that use it need to consider this

changes.

However, there are two aspects of this element that

make its evaluation difficult, firstly its unobservable nature

and secondly the existing noise in the sample correlation

matrices [34]. Considering these issues, different approa-

ches have been proposed to treat and obtain correlation

matrices in the context of market behavior.

Following this line, the changes in the returns of the top

1000 stocks in the US market over a two-year period were

studied, finding that the correlation matrices of the series

have universal properties of random matrices and that the

components of the eigenvectors vary over time [40].

Regarding the distributions of the correlation coeffi-

cients of the correlation matrix of the market indexes, the

DJIA and DAX indexes (both indexes composed of 30

stocks) were studied at the same time, and it was observed

that the distribution of the correlations showed a normal

distribution behavior. Likewise, it was observed that the

distribution of the DJIA index had a lower variance, as well

as a smaller separation between the highest eigenvalue and

the lowest ones, giving a possible explanation that the

DAX index is more influenced by the market (represented

in external news text quoted left), which makes the com-

ponents evolve more coherently. They also observed that

drawdowns and draw-ups behave differently; the former

are dominated by a strong collective eigenvector with large

eigenvalues, the opposite for the other case where the

decrease of the larger eigenvalues is simultaneous with the

increase of the smaller eigenvalues (so that the trace is

preserved) [15].

Continuing with the study of the correlation matrices

coming from financial series by means of RMT, it was

proposed to clean these matrices from noise by subtracting

the effect of the largest of the eigenvalues, recognized as

the one that projects the effect of the market on the assets.

The authors realize that the use of correlation matrices

without clean leads to an underestimation of risk since it is

over-invested in eigenvectors with an artificial low risk

[33].

In reference to the analysis of the information contained

in the eigenvectors associated with the significant eigen-

values, which follow the market eigenvector, it has been
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shown that these contain information that allows classify-

ing the assets in such a way that they group in different

sectors of the economy, and that in addition, these struc-

tures are stable over time [25].

In addition, in the study of eigenvectors from correlation

matrices, the influence of the market over the assets that

make up a stock index has also been analyzed, and it has

been observed that the largest of them represents this fac-

tor. In this way after the removal of this effect was ana-

lyzed the composition of eigenvectors, showing their

contribution to several business sectors [26].

In an attempt to unravel the relationships between

markets, the nonsynchronous information between them

was studied, i.e., without corrections due to the time-zone

difference, generating a taxonomy from their correlation

coefficients, finding an important geographical component

in the generation of the groupings [6].

Similarly, the effect of synchrony between two markets

with time-zone lags on the correlation matrix was investi-

gated and it was observed that if these lags are properly

treated they make both markets behave as one (an eigen-

value emerges that dominates the rest), and that one of

them has more powerful effects on the other [16].

With respect to the behavior of the largest eigenvalues

that deviate beyond the theoretical predictions of the RMT,

it has been found that few of them are stable over time and

that the significant components associated with them vary

according to the time period, resulting in a dynamic

behavior [41].

Regarding situations in which the RMT predictions are

questionable, it was found that for covariance matrices

generated from data produced by a nonsymmetric elliptic

distribution with heavy tails, the Marchenko–Pastur law

does not correctly detect those eigenvalues that represent

noise by assigning an overestimated weight to the largest of

them. This, however, can be corrected by substituting the

sample covariance matrix with the spectral estimator [23].

On the other hand, it has been suggested that nonsta-

tionarity may affect the eigenvalues, a situation that has

been associated with some of the stylized facts of financial

series such as long-range dependencies and the change of

covariance structure. Thus, the RMT would not be able to

correct for these situations [38].

In spite of these observations, RMT has been shown to

be a good way to select the optimal number of principal

components in the context of multivariate volatility models

giving to the problem the relevant information [46].

Associated knowledge has been developed from corre-

lation structures, permitting to visualization of the rela-

tionship between assets from a Complex Network

perspective. The use of Minimum Spanning Trees was

proposed for first time generating a distance metric from

correlation matrices [36].

Additionally, these relationships have been studied by

the use of network methods in the context of RMT, per-

mitting the evaluation of changes produced in a network

before and during crises. In this way, changes were

observed in topological measurements and the shapes of

trees and hierarchical clustering generated from 20 global

financial indices, before and after the 2008 crisis [30, 52].

From this brief review, we can see that RMT has been

used in a series of applications being a fruitful field of

study for quantitative finance.

2.3 Machine learning methods

The previous approaches considered, in some way, are

models based on probability statistics theories and in a data

generation process (DCC-GARCH) that has its main

assumptions in the normal (symmetric) nature of the return

stocks behavior, a questionable fact that has been a

remarkable state in the named ‘‘stylized facts’’ of financial

time series.

These stylized empirical facts are common properties

that can be observed ‘‘across many instruments, markets,

and time periods’’ [13]. Between those associated with

asset returns, we can appreciate (i) Absence of correlations,

(ii) Heavy tails, (iii) Gain/loss asymmetry, (iv) Volatility

clustering. The importance of these patterns points to the

selection of parametric distributions that usually models

use to characterize the data behavior to obtain accurate

forecasts.

One way to avoid this parametric selection is the use of

models from the field of Artificial Intelligence. In the

context of financial data, mainly have been used supervised

Machine Learning models, whose characteristics aim at

establishing a data-driven, self-adaptive, and nonparamet-

ric process [31]. The main objective of these models is to

provide investors with predictions that allow them to

consistently earn above-market returns by breaking the so-

called efficient market hypothesis.

Artificial neural networks (ANNs) have been used for

stock market prediction applications. Thus, by using a

Feed-Forward Neural Network with an output layer, the

authors evaluated the effect of selecting nodes within the

hidden layer by training the network with a backpropaga-

tion algorithm. They observed high competition among the

different alternatives, concluding that the parameterization

of these models (i.e., the selection of the number of nodes

and the number of hidden layers) is an entire topic in itself

[43]. Alternatives to the training algorithm for ANNs have

been proposed. In financial forecasting, an evolutionary

virtual data position (EVDP) was proposed which reduces

noise and enhances the accuracy of forecasts [39].

Applications that relate multivariate time series models

and multivariate artificial neural networks (MANNs) also

Neural Computing and Applications

123



have been developed to forecast volatility. Thus, a hybrid

DCC-GARCH(1,1)-MANN was used to calculate the

volatility between five assets from different world stock

markets [KSE-100 (Pakistan), BSESN(India), S &P500

(USA), FTSE-100 (UK), KLSE (Malaysia)], showing a

competitive performance in relation with DCC-GARCH,

while authors mention that are necessary additional testing

to a further extensions [20]

In relation to the capacity of generalization of Machine

learning models, the forecast of financial time series was

evaluated between the Support Vector Machine and a

Multilayer Perceptron, seeing that SVM has a better out-of-

sample performance, besides a faster training [10].

In another application of ML related to the prediction of

the change direction of financial assets was used a Random

Forest algorithm, seeing that treating the problem of fore-

casting as a classification problem is more feasible than

predicting exact prices because of the chaotic nature and

the volatility of its [29].

Following with Random Forest application, in a near

study was evaluated a Random Forest model vs

XGBOOST in the classification problem related to the sign

of the return. Besides was analyzed the dependence of the

accuracy of models as function of the trading window,

seeing that for bigger windows the accuracy of both models

increases [1]. The use of Random Forest also has shown

interesting results about the integration of Global Markets,

showing that models that use other global market for the

forecast of a particular global market improve the forecast

of those models that considers autoregressive past lags and

technical information [49].

Many applications of Machine Learning models focus

on predicting prices, returns of financial assets, macroe-

conomic variables, and fundamental indicators. Support

vector regression (SVR) is a model that has shown good

performance in time series prediction as it can handle the

nonlinear properties of time series. In particular, one way

to treat and forecast multivariate series from covariance

matrices is by allowing the obtaining of positive definite

matrices from disjoint series. This is done by using a

process that decomposes covariance matrices using the

Cholesky decomposition, generating Cholesky factors for

each entry of the covariance matrices. An autoregressive

SVR model can then be applied which transforms the

multivariate problem into a univariate problem [22].

3 Data and measures

3.1 World stock indices

We focus our investigation on the statistical relationship

among 29 world stock Indices that include different

geographical locations, such as Africa, Asia, Europe, Latin

America (LATAM), Oceania, and North America. We use

daily data considered the period 2008–2022; its description

is presented in Table 5.

We calculated the log daily returns of each asset i,

denoted ri, which were obtained from their prices at time t,

PiðtÞ by means of the relation:

RiðtÞ ¼ lnPiðtÞ � lnPiðt � 1Þ ð1Þ

The descriptive statistics for the daily normalized returns of

the indices are shown in Table 6. We can observe the

differences in the individual indices statistics considered.

Positive and negative values for the Average Returns,

Skewness, and Kurtosis reflect a variety of different

behaviors between them in the time span.

3.2 Moving windows selection

Before making comparisons between the different methods

of estimating the correlation matrices, it was necessary to

define the training and testing scheme from which they are

obtained, choosing between a sliding window or an

expanding window scheme [27]. This selection depends on

the time series properties across time. The dynamics of

correlation through time have been studied frequently

using a sliding moving window schema.

In this way, correlation matrices have been studied for

the problem of the dynamic of correlation over time [44].

Here the authors used a time sliding moving windows

schema, where each considers 400 trading days across a

period of 12 years, considering for the window indexes

[t; t þ w� 1], where t varies between [1; T � wþ 1], with

T being the total length of the series. In addition, it is

necessary to take into consideration two other aspects that

influence the forecast problem (i) the window size (w) se-

lection and (ii) the periods to forecast ahead (K). This has

been studied in a forecast problem in the Macroeconomics

field showing its importance [54]. Also in the field of

Finances have been analyzed the importance of size win-

dow selection to generate realized covariances [9].

In our work, according to [54] we separate the decision

in two steps:

• Slide window size selection.

• Comparison of models in relation to the K periods

ahead.

Thus, for each combination of window size and prediction

horizon, the forecast error was evaluated using the mean

absolute error (MAE) and mean squared error (MSE)

metrics, finally selecting the combination where we see a

stabilization of this error.
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3.3 Statistics measurements

For each of the different correlation matrices obtained in

each time window, the following indicators were calculated

for the correlation coefficients [12]: Mean:

�q ¼ 2

NðN � 1Þ
X

i\ij

qij ð2Þ

Variance:

�k2 ¼
2

NðN � 1Þ
X

i\ij

ðqij � �qÞ2 ð3Þ

Skewness:

�k3 ¼
2

NðN � 1Þk2=32

X

i\ij

ðqij � �qÞ3 ð4Þ

Kurtosis:

�k4 ¼
2

NðN � 1Þk22

X

i\ij

ðqij � �qÞ4 ð5Þ

4 Methods for the correlation matrix
estimation

4.1 Pearson correlation matrix

Pearson’s correlation is an indicator that arises to under-

stand the strength of linear association between two vari-

ables. Thus for two series of returns RiðtÞ and RjðtÞ it will
be calculated according to:

cij ¼
h½RiðtÞ � hRiðtÞi�½RjðtÞ � hRjðtÞi�i

rirj
ð6Þ

where ri and rj correspond to the standard deviations of

the returns of two ETFs i and j at time t, and h�i to the

mean. Thus for a matrix with N series of ETFs, the total

number of elements qij to calculate will be NðN � 1Þ=2,
which will populate the correlation matrix C.

4.2 Random matrix theory

The Random Matrix Theory is a tool that permits the

separation of the information present in correlation matri-

ces from noise. The hypothesis that assumes the RMT is

the zero information hypothesis [47].

Thus, for random matrices with entries from a normal

distribution, where the number of rows (T) and the number

of columns (N) tend to infinity, and the ratio between them

Q� ¼ T=N� 1, the probability law for their eigenvalues

was defined the Marchenko–Pastur law [33]:

PrðkÞ ¼ Q�

2pr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkmax � kÞðk� kminÞ

p

k
ð7Þ

modifying the limits kðmax =minÞ as:

k0ðmax =minÞ ¼ 1þ 1

Q� � 2

ffiffiffiffiffiffi
1

Q�

s
ð8Þ

Regarding the rule to select the significant eigenvalues,

have been proposed other methods that target those

eigenvalues with economical meaning [46] and methods

related to information theory [28]. In accordance with the

results of previous work, there were selected those matrices

that consider the three bigger eigenvalues [50]. In this way,

the top three eigenvalues were selected and the correlation

matrices were filtered as shown in [47].

Thus, to obtain a filtered correlation matrix, this is

diagonalized and their eigenvalues are ordered by selecting

the S largest than the value kmax previously determined by

Eq. (7).

Then, to keep the part of the correlation matrix associ-

ated with these eigenvalues, a filtered diagonal matrix is

constructed, whose elements are as follows:

K0 ¼
0; if 1 6 i\N � S

1; if N � S 6 i 6 N

�
ð9Þ

In this work, the case for S ¼ 3. Finally, a correlation

matrix C0 is obtained by applying the transformation K0,
and the elements of the diagonal are set to one.

4.3 DCC-GARCH

The Generalized Autoregressive Conditional

Heteroscedasticity models (GARCH) are supported by the

definition of two equations: to both, (i) the returns of

assets () and (ii) the behavior of its volatility ().

rt ¼ E½rtjIt�1� þ �t ¼ lt þ �t ð10Þ

r2t ¼ E½r2t jIt�1 � l2t � ¼ E½�2t jIt�1� ð11Þ

For the multivariate version, DCC-GARCH model [19, 46]

(dynamical conditional correlation model) is the assump-

tion of normality of the considered assets with a covariance

matrix Vt. Then, the parameter estimation consists of two

steps. In the first step, the different returns associated with

each asset are modeled as a univariate GARCH(1,1) model

obtaining its individual parameters. In the second step, the

standardized residuals obtained from the first step are used

to estimate the conditional covariance matrices.

The covariance matrix Vt is decomposed as:

Vt ¼ DtRtDt ð12Þ

with Dt ¼ diagðrit; . . .; rNtÞ as the diagonal matrix that
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contains the standard deviation of asset returns. Rt is the

correlation matrix. The elements of Dt, rit are modeled as a

univariate GARCH process that in our study was a

GARCH(1,1) given by:

r2it ¼ a0i þ a1i�
2
it�1 þ b1ir

2
it�1 ð13Þ

The standardized residuals from GARCH(1,1) estimation

are used to estimate the correlation specification of DCC-

GARCH(1,1):

Rt ¼ Q��1
t QtQ

��1
t ð14Þ

and

Qt ¼ ð1� k1 � k2Þ �Qþ k1et�1e
|

t�1 þ k2Qt�1 ð15Þ

where �Q ¼ E½ete|t � is the unconditional covariance and

et ¼ D�1
t �t are the standardized errors, and Q� is a diagonal

matrix that contains square root of the diagonal elements of

Qt, Q
� ¼ ðdiagðQtÞÞ1=2.

In our study, DCC-GARCH simulations were made by

the use of R programming, particularly the rmgarch

package [24].

4.4 Univariate modeling using Cholesky
decomposition

In this work, we use the methodological approach used in

[22] to test the behavior of models that do have not a

multivariate specification to the estimation of correlation

matrices. Thus, the Cholesky factors obtained from the

Correlation Matrix Cholesky Decomposition were modeled

as univariate time series using this model:

• Autoregressive.

• Autoregressive moving average (ARMA).

• Support vector regression (SVR).

• Feed-forward neural networks (AANN).

The general procedure to treat Correlation Matrices and

Forecast their elements in an out-of-sample schema con-

siders the following steps:

1 Decomposition of covariance matrices of returns into

Cholesky factors

2 Forecast the univariate series of entries of Cholesky

factors using a selected model {ARMA, Brownian

Motion, SVR, Recurrent Neural Network }

3 Reconstruct covariance matrix from forecast using a

reverse operation of Cholesky decomposition.

We can visualize the process in Fig. 1.

4.4.1 Mixed autoregressive-moving average models
(ARMA)

The study of time series contemplates the study of the

dependence of data in relation to past occurrences.

Autoregressive models are a stochastic model that con-

siders current observation as a linear function of past p

observations, taken a denomination of autoregressive pro-

cess of ‘‘p’’ order, AR(p) defined as:

yt ¼ /1yt�1 þ /1yt�2 þ � � � þ /pyt�p þ zt ð16Þ

where the term zt is a random error. In the same way have

been defined Moving Average(MA) models where the

dependent variable has a dependence on the error terms, zt

yt ¼ zt � h1zt�1 � h2zt�2 � � � � � hqzt�q ð17Þ

In this way, the ARMA model considers both processes,

(16) and (17), to have a more flexible model for the current

Fig. 1 The algorithm used to test the univariate models to forecast

Correlation Matrices of returns
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time series value, yt [7]. This model is defined for a sta-

tionary time series.

4.4.2 Support vector regression

The support vector regression is an extension of the Sup-

port Vector Machine method, used to regression problems

[51]. It has been applied to forecast financial series like

stock indices, stock prices, and volatility indices. Accord-

ing to [22] we first define a regression model:

y ¼ rðxÞ þ d ð18Þ

where x is a the vector of regressors and d is additive zero-

mean noise with variance r2, and rðxÞ is a regression

function. Considering a training dataset we want to

approximate a regression function that deviates � from the

outputs. In the SVR the input x is mapped on a high-

dimensional feature space using a nonlinear function, and

then a linear model it is constructed in this feature space:

f ðxÞ ¼
Xd

i¼1

xiwiðxÞ þ b ð19Þ

where xi are coefficients, wiðxÞ are transformations and b a

bias term. To determine f ðxÞ it is necessary to determine

the coefficients xi. To do it was proposed a �-insensitive

loss function L�. So, this Lepsilon will compare its output

with the testing set y, and in those cases where the absolute

difference will be greater that � there will be a penalization,

no penalty in the other case:

L� ¼
0; jy� f ðxÞj � �
jy� f ðxÞj � �; otherwise

�
ð20Þ

Finally it is calculated an optimal regression function

considering:

Wðx; nÞ ¼ 1

2
jjxjj2 þ C

Xn

t¼1

ðnt þ n�t Þ ð21Þ

where C is a constant and nt and n
�
t are slack variables [22].

In this work was used a Radial Kernel. Simulations were

made in the R programming language using the interface to

libsvm in e1070 library [42].

4.4.3 Autoregressive neural networks

The artificial neural network model is a structure that

connects computational nodes, or neurons, in a series of

layers. It can be classified as a semi-parametric method.

Particularly, in feedforward neural networks, the neurons in

the input layer are connected to other nodes present in a

hidden layer, and those connect to each other until they

reach the unique node in the output layer. This model can

be seen as an autoregressive nonlinear model when lagged

values of the time series are used in its construction, also

known as an NNAR model [27] (Fig. 2).

The inputs are multiplied by weights and pass to an

activation function to produce an output. In this way, we

can see it as a linear model where the output o can be

written as:

o ¼ fo a0o þ
X

wjohj

h i
ð22Þ

where wi represents the weight related to output node [4],

being the foð�Þ a linear function. Simulations were made in

the R programming language using the nnetar package

[42].

4.4.4 Random forest

In Machine Learning, the concept of several methods

working together to give a better recommendation has

taken the name of ensemble learning, being the basis of

procedures like the Random Forest. Particularly in the case

of Random Forest, the unique model behind is the decision

tree, however, the combination of prediction depends on

how the different trees are structured, in this particular case

from independent random vectors [8]. Among the charac-

teristics of Random Forest are good performance predic-

tion and flexibility, which would be used in both,

classification or regression problems. The random forest

classification consists of a collection of trees

ĥð�;H1Þ; . . .; ĥð�;HqÞ ð23Þ

where H1. . .Hq are i.i.d random variables. Then, the

Random Forest predictor is obtained by the aggregation of

the multiple Random Trees. For the particular case of a

regression problem, the aggregation is defined as:

ĥRFðxÞ ¼
1

q

Xq

l¼1

ð̂x;HlÞ ð24Þ

Fig. 2 The multilayer feed-forward neural network with one hidden

layer
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Simulations were made in the R programming language

using the randomForest package [42].

5 Out-of-sample evaluation

Once we select the moving window size, considering for

the decision both, the size that stabilizes the error and a size

that makes sense with the problem of the dynamic of the

correlation, we need to make an estimation from each

moving window and compare this forecast with an out-of-

sample realized correlation, in this case the realized cor-

relation matrix that considers the next data to the moving

window equivalent to 30 days ahead.

For each method were estimated correlation matrices for

the K ahead periods from the training period

[1; T � wþ 1� K].

Additionally, hyperparameter tuning was performed for

the Machine Learning methods based on a fivefold cross-

validation schema. Once the model parameters were

selected, they were used to train the models during the

previously mentioned training periods [1; T � wþ 1� K].

6 Results

In this section, we present some of the main results

obtained from the studied methods.

6.1 Moving window size

As we mention in Sect. 3.2, to have a scientific approach

about the moving window size selection, it was measured

the mean square error (MSE) and mean absolute error

(MAE) as a function of moving window sizes (w) and

forecast horizon (K).

Both metrics MSE and MAE between two matrices S

and H with dimension N 	 N each are defined in [2]:

MSE ¼ 1

N2
vecðH � SÞ0vecðH � SÞ; ð25Þ

where vecð�Þ operator represents column stacking operator.

MAE ¼ 1

N2
absðH � SÞ0vecðH � SÞ ð26Þ

From Figs. 3 and 4 we can see that at the size of 120

days both errors are stabilized. When we refer to the sta-

bilization of the error, we mean that the metrics used to

evaluate this error, the difference between the current value

and the previous value, decreases by less than 20%.

To give an example for MAE, if we look at the error for

K ¼ 15, for a time window of size MW ¼ 45 days

MAE ¼ 0:0628, for MW of 60 days MAE ¼ 0:0450, for

MW of 80 days MAE ¼ 0:0330, for MW 100 days

MAE ¼ 0:026, for MW of 120 days MAE ¼ 0:0214 and

for MW of 200 days MAE ¼ 0:0126. The first occasion,

between MW ¼ 45 and MW ¼ 60, decreases 28.4%,

between MW60 and MW80 decreases 26.6%, between

MW80 and MW100 decreases 21%. The first time the

decrease is less than 20% is between MW100 and MW120.

We observe this for all the K ahead, Table 1.

Because of this result, the next experiments will con-

sider only moving windows of this size. Besides the

problem context makes sense to evaluate the dynamic of

the correlation in the period between quarter and semester,

understanding that correlations between indexes may

change in this considered range of time.

6.1.1 Moving windows statistics

From the different statistical measures, we observe that the

different methods used preserve the trends, even though

they have variations among them. Mainly we see two areas

where the average correlations increase, the first one

between the periods 2012 and 2013, and the second one

from 2020 onward where a peak is observed. The variance

of the correlation coefficients decreases in relation to this

peak of average correlation, which could suggest that a

Fig. 3 The error behavior in the selection of moving window size—

MSE

Fig. 4 The error behavior in the selection of moving window size—

MAE
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general increase in correlations makes these values more

homogeneous. If we evaluate the skewness and kurtosis

associated with this same zone where we see the mean

correlation peak, we see that the skewness moves away

from zero (associated with a normal distribution) and the

kurtosis values become positive, indicating that the coef-

ficients are more concentrated. Thus we see that in general,

the correlation coefficients are far from normal, Fig. 5.

6.2 Dynamics of correlation matrices

One of the problems associated with the correlations is its

dependence on time, which affects between others things

the different models that use it as input. In a related area

has been studied this behavior by the use of statistical

analysis produced from correlation matrices, showing that

the correlation increases in those periods of crisis [44].

In this way, using the different correlation matrices we

construct from each window a probability density function

(PDF) to see how they behave on time.

Table 1 Stability of moving windows

Method MW KPI K ¼ 01 K ¼ 05 K ¼ 10 K ¼ 15 d%_K ¼ 01 d%_K ¼ 05 d%_K ¼ 10 d%_K ¼ 15

Pearson 45 MAE 0.0096 0.0282 0.0457 0.0628

Pearson 60 MAE 0.0072 0.0208 0.0333 0.0450 - 25.6 - 26.2 - 27.1 - 28.4

Pearson 80 MAE 0.0053 0.0155 0.0247 0.0330 - 25.4 - 25.6 - 26.0 - 26.6

Pearson 100 MAE 0.0042 0.0123 0.0195 0.0260 - 20.8 - 20.8 - 21.0 - 21.2

Pearson 120 MAE 0.0035 0.0101 0.0161 0.0214 - 17.1 - 17.4 - 17.5 - 17.7

Pearson 200 MAE 0.0020 0.0059 0.0094 0.0126 - 43.0 - 42.1 - 41.4 - 41.1

Fig. 5 Mean, variance, skewness, and kurtosis of correlation coefficients obtained from the moving windows of 120 days between 2008 and 2022

years
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As shown in Fig. 6a–c, the results indicate that the

models differ in the way to sense the crisis periods asso-

ciated with the levels of correlations.

6.3 Forecasting errors

Once we observed the difference in how methods see the

correlation among indices, a question arises about how

methods behave in relation to forecast error as a function of

the periods ahead (K). In this way, each model forecast was

compared with the realized volatility in the whole period

(2008–2022) to have a first view of the error distribution.

In Fig. 7 we appreciate that there are differences, not

major at least for K ¼ 1, however considering the previous

behavior of the correlation distribution (Fig. 6) we want to

Fig. 6 Dynamics of correlation coefficient distribution for the different models. The distribution was calculated from 120-day moving windows

of returns

Fig. 7 Histogram with the out-of-sample error between Correlations components of estimated correlations against the realized correlation of next

period. Include all ranges of time, between the years 2008 and 2022
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understand if there are factors such as the time period, or

the K ahead considered that drive this behavior (Fig. 8).

6.3.1 SFE in the whole period

To determine the precision of the forecast and compare the

behavior between selected methods we measure the out-of-

sample square forecast error (SFE) for the elements rij. In
the moving window was determined the ahead forecast for

k days ahead (k ¼ 1; 5; 10; 15 days) that were compared

with the realized correlation of the next period. In this way,

as is detailed in [55] we define the indicator for each

moving window mw as:

SFEmw ¼
Xn

i¼1

Xi

j¼1

rij;mw � r̂ij;mw ð27Þ

With the purpose of visualizing the dispersions of the

SFE error generated in the estimations, we proceeded to

generate a boxplot of SFE vs the method and k ahead

estimation, Fig. 9. In order to make it comparable with the

previous figure, the same scale of values was considered,

that is, the SFE values are between 0 and 30. With the

exception of SVR, we see that the mean of the methods for

all the K ahead is similar; also the bulk of values shows to

have a similar dispersion. These two previous graphs give

us the basis to incorporate the temporal variable in the

following analysis.

Besides having a view of how a particular period of time

was behaving in relation to its forecast performance, we

compute the mean squared forecast error (MSFE) in the

different years in which each moving window belongs in

this way:

MSFEyear ¼
1

M

XM

y¼1

SFEy ð28Þ

where M is the particular index year at which the moving

window belongs (Fig. 10).

In Fig. 11a we appreciate levels of errors that vary from

10.47 to 8.4%, where DCC-GARCH over outperforms the

other methods in the out-of-sample error. In Fig. 11b we

can appreciate that between different methods there are

differences in the performance of forecast through time,

with similar levels; however, SVR shows a decrease in its

performance for the forecast ahead K ¼ 10 and K ¼ 15.

In a dynamic visualization about the behavior of forecast

error of methods in the different years, we can see Fig. 12.

Interestingly we can appreciate that for DCC-GARCH, the

MSFE values are similar to other methods for all periods

Fig. 8 The square forecast error (SFE) of different combinations between method/forecast ahead in the out-of-sample experiment
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with two exceptions, years 2008 and 2020; both years were

the last two main crises at a global level.

After these observations, our analysis moves to under-

stand what factors can drive these differences at the level of

Fig. 9 Boxplots for the SFE error for different combinations of forecast horizon (K) and methods

Fig. 10 The mean square

forecast error (MSFE) of

different methods for a one

ahead forecast (k ¼ 1) in the

out-of-sample experiment
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the decomposition of the estimated correlation matrices for

the analysis of eigenvectors and eigenvalues.

6.3.2 Eigenvalues and eigenvectors analysis

In order to understand the forces driving the correlation, we

studied the behavior of both the eigenvalues and the

eigenvectors of the correlation matrices. In the following,

we observe the Eigen Entropy index related to the eigen-

values of the decomposition of the correlation matrices

R ¼ VKV|. This is a systemic risk measurement based on

correlation [11].

Eigen Entropy ¼ �
X

i

pi log pi ð29Þ

We can see that Eigen Entropy related to the DCC-

GARCH is strongly decoupled from the other methods in

2020, but in general, we observe that the index has a

similar behavior.

6.3.3 Out-of-sample error significance

Once we have analyzed the behavior of SFE distributions

and the Eigenvector/Eigenvalue, we want to evaluate if the

measure of out-of-sample error has a relation with mea-

sures that come from the Eigenvector. In this way, we

evaluate the relation between these two variables using a

linear regression. So in this way we set:

logðRealizedEntropyÞ ¼ logðSFEÞ ð30Þ

We found significance for the coefficients associated

with the out-of-sample forecast error (SFE) and show us

are explaining. This is interesting because it provides us

with an economic measure of the percent change in the

forecast in relation to market conditions, which are incor-

porated differently by the different methods. Thus we find

that the method that is least affected by the market risk

condition is DCC-GARCH.

6.3.4 Temporal MST

Finally, in order to observe the changes through the dif-

ferent time windows, Minimum Spanning Trees were

constructed from Pearson’s Correlation matrices. There

were considered three periods that contain the moving

windows and were calculated the average correlation. The

periods selected considered years 2008–2012, 2013–2017,

and 2018–2022. These correlations were transferred to a

measure that allowed them to be constructed according to a

distance [36].

Thus to convert the distance correlation into an abstract

space, we define a metric dði; jÞ ¼ 1� q2. This measure

satisfies the three criteria for a metric:

1. dði; jÞ ¼ 0, if i ¼ j

2. dði; jÞ ¼ dðj; iÞ
3. dði; jÞ� dði; kÞ þ dðk; jÞ
From the MST generated we observe that the last period

has two particularities: The first, it has a lower variability,

considering it as the mixture of geographical indexes; the

second, we see the reordering of the Asian components in a

single united cluster; this highlights the effects of the crisis

of the last period where the correlation takes the maximum

value in the year 2020 (Figs. 13 and 14).

7 Concluding remarks and future research

In this research, we rigorously evaluate the predictive

power of various statistical techniques for predicting cor-

relation matrices, some older, such as econometrics, and

some newer, such as those proposed by econophysics and

machine learning. We also look at the conditions under

Fig. 11 a The mean square forecast error (MSFE) of the different

methods for 2608 moving windows between 2008 and 2022 and one

ahead period estimation, k ¼ 1. b Table with the different values of

MSFE by K ahead

Neural Computing and Applications

123



which each method works best, and the conditions under

which it makes more or less the same difference which

method is used. On the one hand, we test the predictive

power of RM and compare it with very powerful

techniques such as ANN, Random Forest, and SVM.

Finally, we have seen the effectiveness of the DCC

GARCH models. All these issues are undoubtedly very

Fig. 12 The mean square forecast error (MSFE) of different methods for the 2608 moving windows between 2008 and 2022. In this case, each

moving window belongs to a particular period
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Fig. 13 Eigen Entropy

calculated from the eigenvalues

of correlation matrices from

moving windows of 120 days
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relevant to financial forecasters who are keen to reduce the

prediction error of correlation matrices.

There are also some new and interesting conclusions to

be drawn from this analysis:

• At the methodological level, the window size was

selected empirically. This is a problem that is not

always addressed in the literature that forecast corre-

lation matrices over moving windows. In the current

literature on correlation matrix forecasting, there are

many papers where temporal windows are used without

describing the rationale for the choice of size. In this

paper, this issue has been taken seriously in order to

provide a fair and clear assessment and comparison of

methods.

• Another point made in the paper is the stability of the

estimates obtained with these methods. At the level of

the SFE distribution, in the period 2008–2022 (Fig. 8),

we see that for the forecast periods K ¼ 1 and K ¼ 2

the behaviors look similar for all methods under

analysis. Nevertheless, for K ¼ 10 and K ¼ 15 there

are methods whose errors have wider tails (SVR). This

is undoubtedly an interesting topic for future research.

• In relation to the dynamics of the MSFE Fig. 12, we

can see that except for the years 2008 and 2020, the

errors have very similar levels between the different

methods. However, in those years, for DCC-GARCH,

the MSFE values are notoriously lower. This could be

shedding light on a structural component (nonlinearity)

of DCC-GARCH that is capturing the risk signal in a

better way.

• Regarding the study of the properties of eigenvalues

and eigenvectors from the decomposition of correlation

matrices, the Eigen Entropy’s indicator [11] has been

used as a systematic risk indicator. What is known

about eigenvalues and how they have been interpreted

from RMT studies is that, generally, the largest of them

represents the strength of the market. When there is a

crisis the whole market falls and becomes dominant. If

all the eigenvalues were equal we would have no

correlation among the elements of the correlation

matrix (i.e., a matrix with entries from a normal

distribution), if we had only one eigenvalue the Eigen

Entropy would be minimal.

An important finding of our research is that, from a

statistical point of view, these eigenvalues explain the

variance of the system. How do we understand the

relationship between Eigen Entropy and out-of-sample

error, expressed as SFE? A percentage change in the

estimation error can be explained by the variability of

the eigenvalues measured by the Eigen Entropy in the

realized correlation, which explains the risk present in

the market. In this case, we see that the lowest

prediction variability is observed for DCC-GARCH.

Thus, a 1% change in the Eigen Entropy measured on

the data, the environmental state of the system captured

by the chosen index (the realized correlation matrix), is

associated with an increase in the estimation error of

Fig. 14 Dynamics of MST trees generated from the moving windows

divided by periods, 2008–2012 | 2013–2017 | 2018–2022. The

abbreviations present in the legend should be read as follows: OCE:

Oceania, AME: South America/Latin America, NAM: North Amer-

ica, ASI: Asia, EUR: Europe and AFR: Africa
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0.161***, 0.205***, 0.207***, 0.207***, 0.208***,

0.210***, and 0.230*** for DCCGARCH, AANN,

AR(1), ARMA(1,1), RF, SVR, and RMT3 correspond-

ingly, Table 2.

Looking at the MST trees for the average correlations

corresponding to the 2008–2012, 2013–2017, and

2018–2022 period windows we appreciate differences in

the shape and manner in which the markets are connected.

We also see how the relationship of each asset with respect

to geography becomes stronger in the period containing the

year with the highest correlation, 2020. Thus, all Asian

countries are linked in the same grouping. A very inter-

esting future research question that emerges from this

graphical analysis is the extent to which the correlation

matrices are autoregressive and/or stationary. This line of

research has not yet been explored.

Appendix

Appendix A.1: Hypertuning of machine learning
models

We performed hyperparameter tuning for the Machine

Learning models, that is, autoregressive neural network

(ANN), random forest (RF), and support vector regression

(SVR), using a cross-validation scheme, where the data

were first divided into Training and Testing sets in an 80%/

20% proportion, doing validation/hyperparameter selection

in the Training set and then testing the models on the

Testing set.

So, for each rolling 120-day time window we generated

a set of related Cholesky factors, generating series for each

of the Cholesky factors from the correlation matrices of

N 	 N, a total of 435 factors ðN þ ðN � 1ÞÞ=2þ N, with

2608 observations each.

For the ANN model we did a grid search for hidden

units and num networks, considering consecutive values

hidden unit = (1, 27) and num networks = (20, 50).

For the case of RF we did a grid search for mtry and

trees, considering consecutive values mtry = (1, 30) and

trees = (1, 3000).

Finally for the case of SVR we did a grid search for cost,

sigma, and margin considering consecutive values

cost = (1, 5) rbf_sigma = (0.1, 0.5), and

margin = (0.1, 1).

For the three methods, a fivefold cross-validation

scheme was used.

Since we had 435 series, we take a sample of 29 series,

and tune the hyperparameters for one series each, and then

execute the found parameters for the whole set of series.

Then we evaluate if performance metric improved globally

compared to the default parameter.

For the cases of RF and SVR we did not observe a

significant gain. For the case of ANN we saw differences

between defaults values used previously and the new

hyperparameters tuned that were hidden unit ¼ 5 and

num networks ¼ 22, that generate a significant gain in

MAE ¼ 0:265 for default NNAR(1, 1, 1) versus MAE ¼
0:183 for NNAR(1, 1, 5).

Here we show as example how the tuning for the SVR

before and after the tuning of a particular series of Cho-

lesky factor work.

Table 2 Linear regression summary for the relationship between market entropy and the forecast error (SFE) for the different methods

Dependent variable

log(Entropy)

AANN AR1 ARMA DCC-GARCH RF RMT3 SVR

(1) (2) (3) (4) (5) (6) (7)

log(sfe) 0.205*** 0.207*** 0.207*** 0.161*** 0.208*** 0.230*** 0.210***

(0.007) (0.007) (0.007) (0.009) (0.007) (0.006) (0.007)

Constant - 0.445*** - 0.444*** - 0.444*** - 0.357*** - 0.448*** - 0.519*** - 0.452***

(0.014) (0.014) (0.014) (0.018) (0.014) (0.014) (0.014)

Observations 2608 2608 2608 2608 2608 2608 2608

R2 0.263 0.263 0.262 0.116 0.268 0.327 0.268

Adjusted R2 0.263 0.262 0.261 0.116 0.268 0.327 0.268

Residual Std. Error (df ¼ 2606) 0.286 0.286 0.286 0.313 0.285 0.273 0.285

*p\0:1; **p\0:05; ***p\0:01
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However if we use those parameters in the rest of series,

there are no a improvement, no at least in SVR and RF

model, yes in the case of ANN model, Table 3.

Note that in the context of univariate time series the

metric mean absolute error and root-mean-square error

formulas take the form:

MAE ¼ 1

n

Xn

t¼1

jyt � ŷtj ð31Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

t¼1

ðyt � ŷtÞ2
s

ð32Þ

where yt: real value at time t, ŷt: predicted value at time t,

and n: number of predictions.

Appendix A.2: Note about Sect. 6.3.3

In relation to Sect. 6.3.3, we additionally placed the

regression in the opposite direction of the variables. With

Table 3 Evaluation of models with default parameters versus parameters selected by hypertuning

Model Setting Cost rbf_sigma Margin mtry Trees Hidden_units nnetworks type_data N_Series MAE RMSE

SVR Default 1 0.2 0.1 – – – – Multivariate 29.00 0.15 0.20

SVR Tuned 23 0.0132 0.179 – – – – Multivariate 29.00 0.17 0.20

RF Default – – – 10 2000 – – Multivariate 29.00 0.15 0.18

RF Tuned – – – 15 2581 – – Multivariate 29.00 0.16 0.20

ANN Default – – – – – 1 20 Multivariate 29.00 0.16 0.20

ANN Tuned – – – – – 5 22 Multivariate 29.00 0.14 0.17

Table 4 Linear regression summary for the relationship between forecast error (SFE) and market entropy for the different methods

Dependent variable

log(sfe)

AANN AR1 ARMA DCC-GARCH RF RMT3 SVR

(1) (2) (3) (4) (5) (6) (7)

log(Entropy) 1.283*** 1.269*** 1.266*** 0.721*** 1.288*** 1.419*** 1.278***

(0.042) (0.042) (0.042) (0.039) (0.042) (0.040) (0.041)

Constant 2.011*** 1.990*** 1.989*** 1.974*** 1.998*** 2.122*** 2.000***

(0.014) (0.014) (0.014) (0.013) (0.014) (0.013) (0.014)

Observations 2608 2608 2608 2608 2608 2608 2608

R2 0.263 0.263 0.262 0.116 0.268 0.327 0.268

Adjusted R2 0.263 0.262 0.261 0.116 0.268 0.327 0.268

Residual Std. Error (df ¼ 2606) 0.715 0.709 0.709 0.663 0.709 0.678 0.704

*p\0:1; **p\0:05; ***p\0:01
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this we show that regardless of the direction, DCC-

GARCH remains as the least sensitive method (Table 4).

logðSFEÞ ¼ logðRealized EntropyÞ ð33Þ

Appendix A.3: Data availability

The data used in this research are freely available in the site

https://finance.yahoo.com/. The data description is pre-

sented in detail in Table 5 (Table 6).

Table 5 Index selection from different regions of the World—contain data between 2008 and 2022

Country Ticker Region Economy Description

South Africa EZA Africa Developing iShares MSCI South Africa ETF

China GXC Asia Developing SPDR S &P China ETF

China FXI Asia Developing iShares China Large-Cap ETF

China 000001.SS Asia Developing Shanghai Stock Exchange SSE 50 A Share Index

Hong Kong—China EWH Asia Developed iShares MSCI Hong Kong ETF

Hong Kong—China ^HSI Asia Developed HANG SENG INDEX

Japan EWJ Asia Developed iShares MSCI Japan ETF

Japan ^N225 Asia Developing Nikkei 225

Singapore EWS Asia Developing iShares MSCI Singapore ETF

South Korea EWY Asia Developed iShares MSCI South Korea ETF

Taiwan EWT Asia Developing iShares MSCI Taiwan ETF

France EWQ Europe Developed iShares MSCI France ETF}

France ^FCHI Europe Developed CAC 40

Germany EWG Europe Developed iShares MSCI Germany ETF

Germany ^GDAXI Europe Developed DAX PERFORMANCE-INDEX

Italy EWI Europe Developed iShares MSCI Italy ETF

Switzerland ^SSMI Europe Developed SMI PR

UK EWU Europe Developed iShares MSCI UK ETF

UK ^FTSE Europe Developed FTSE 100

Euro Zone ^STOXX50E Europe Developed ESTX 50 PR.EUR

LATAM ILF LATAM Developing iShares Latin America 40 ETF

Canada EWC North America Developed iShares MSCI Canada ETF

Mexico EWW North America Developing iShares MSCI Mexico ETF

USA ^DJI North America Developed Dow Jones Industrial Average

USA ^GSPC North America Developed S &P 500

USA ^NDX North America Developed NASDAQ 100

Australia EWA Oceania Developed iShares MSCI Australia ETF

Brazil EWZ South America Developing iShares MSCI Brazil ETF

Chile ECH South America Developing iShares MSCI Chile ETF
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15. Dro _zd _z S, Grümmer F, Górski AZ, Ruf F, Speth J (2000)

Dynamics of competition between collectivity and noise in the

stock market. Phys A Stat Mech Appl 287(3):440–449. https://

doi.org/10.1016/S0378-4371(00)00383-6
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